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1 Departament de Fı́sica Fonamental, Facultat de Fı́sica, Universitat de Barcelona, Diagonal 647,
08028 Barcelona, Spain
2 Service de Physique de l’État Condensé, Centre d’études de Saclay, Orme des Merisiers,
91191 Gif-sur-Yvette Cedex, France

Received 12 July 2002, in final form 8 October 2002
Published 7 January 2003
Online at stacks.iop.org/JPhysA/36/665

Abstract
We study analytically and numerically the role of temperature shifts in the
simplest model where the energy landscape is explicitly hierarchical, namely
the Sinai model. This model has both attractive features (there are valleys within
valleys in a strict self-similar sense), but also one important drawback: there
is no phase transition so that the model is, in the large-size limit, effectively at
zero temperature. We compute various static chaos indicators, that are found to
be trivial in the large-size limit, but exhibit interesting features for finite sizes.
Correspondingly, for finite times, some interesting rejuvenation effects, related
to the self-similar nature of the potential, are observed. Still, the separation of
time scales/length scales with temperature in this model is much weaker than
in experimental spin glasses.

PACS numbers: 75.10.Nr, 75.40.Gb, 75.40.Mg

1. Introduction

The phenomenology of very different glassy systems (spin glasses, structural glasses, pinned
defects) exhibits striking similarities. This is often discussed in terms of a complex energy
landscape, with some universal features in the organization of valleys, saddles and barriers
[1–4]. Mean-field models suggest that the energy landscape of some systems is hierarchical,
with a self-similar organization of valleys within valleys [5]. This picture has been advocated
to interpret [6–8] the striking rejuvenation and memory effects during temperature cycling
experiments, observed first in spin glasses, but also in disordered ferromagnets, dipolar
glasses, polymer glasses (PMMA) or gelatin [10–13]. These experiments study the effects of
temperature shifts, T1 → T2 < T1 → T1 on the aging part of the susceptibility. Rejuvenation
describes the restart of the aging process observed upon changing the temperature to T2 after
having aged at temperature T1: the relaxation curve at T2 is indeed, to a good approximation,
identical to that measured after a direct quench from high temperature to T2. Memory, on the
other hand, means that the aging process observed when the system is set back to T1 resumes
as if no shift had occurred.

0305-4470/03/030665+20$30.00 © 2003 IOP Publishing Ltd Printed in the UK 665

http://stacks.iop.org/ja/36/665


666 M Sales et al

Another general framework to understand disordered systems is the droplet picture,
developed in the context of spin glasses and of pinned manifolds (domain walls, vortices,
etc) [14, 15]. The approach aims at describing the physics in terms of localized excitations
of different sizes (droplets), with an energy scale that grows with their size. As emphasized
in [16, 17], these two approaches are in fact complementary, and the dynamics in the droplet
model is naturally hierarchical, due to the strong separation of time scales with length scales
and temperature. Temperature plays the role of a microscope since the active length scales
that contribute to the dynamics are very different at different temperatures.

In both pictures, memory conservation is due to this separation of time scales with
temperature [18, 19] (see also [20]). The origin of rejuvenation, however, is different. In the
hierarchical landscape framework, a small temperature drop (fromT1 to T2 = T1−�T ) reveals
finer details of the random energy landscape, among which the system must reequilibrate. In
other words, small length scales, that are ‘unpinned’ at temperature T1, freeze at T2, thereby
producing a strong out of equilibrium signal (rejuvenation). This scenario can be given
some precise meaning in the context of the random energy model (REM) close to its critical
temperature [21], or in the generalized (multilevel) REM where rejuvenation and memory
effects very similar to experiments can indeed be observed [22, 23]. On the other hand,
rejuvenation effects in the droplet model have been attributed to ‘temperature chaos’: for
any temperature difference �T , the equilibrium configurations at the two temperatures are
completely different beyond a certain length scale ��T , called the overlap length, that diverges
when �T → 0 as a power law. Correspondingly, the correlations of the free energies at
the two temperatures are thought to decay with the size of the system L as exp(−L/��T ).
This scenario, postulated for spin glasses in [14, 15], has been given credit recently in the
context of directed polymers [24–26]. In this case, both analytical arguments and numerical
results point towards the existence of an overlap length, although the free-energy decorrelation
appears to be much slower than exponential in the size of the system. For spin glasses, the
status of temperature chaos is still controversial and unclear as compared to the influence of
other, stronger perturbations such as magnetic field changes or coupling strength changes.
Results in mean-field spin glasses [27–29] and numerical calculations for small systems [30]
hint at extremely weak chaotic effects in temperature. This conclusion extends also to short-
range systems where chaotic effects in the equilibrium properties seem to be extremely weak
[31, 32]. Chaotic effects, if any, seem to appear only for quite large systems even when �T/T

is of order one [33–35]. Nevertheless, some recent spin-glass experiments were interpreted in
terms of an overlap length [36], whereas numerical simulations of the 4D Edwards–Anderson
model have revealed rejuvenation due to small scale freezing without chaos [19]. (For a
detailed study in the 3D Edwards–Anderson model and a discussion of possible scenarios
about why rejuvenation effects are not observed in simulations, see [19, 37].)

In view of the controversy, we feel that more work on the subject is needed. The aim of
the present paper is to study in detail the question of ‘temperature chaos’ on the Sinai model,
which is the simplest model where the energy landscape is explicitly hierarchical, and for
which many exact results are available [38–42]. The Sinai model was discussed in this context
in [12, 16]; preliminary results were obtained by Yoshino, but no systematic study had been
performed.

The Sinai model is an example of a one-dimensional self-similar potential with long-range
correlations. In high dimensions, this problem is equivalent to a mean-field spin glass with
a continuous replica symmetry breaking solution [43, 44]. In one dimension, however, there
is no phase transition: the long-time, large-scale behaviour of the system is ruled by the
zero-temperature fixed point, where the deepest minimum dominates. This is because the
entropy in this model is of order one, whereas the energy scale increases as

√
L. However,
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there are interesting static and dynamical crossover effects, as a function of the size of the
system or of the time, that we study in detail in this paper. In particular, for finite waiting
times, lowering the temperature leads to a localization effect which is a smeared version of the
real localization transition that exists in the REM [9]. This kind of transition is known to bring
about a large response against temperature changes [21], so that we expect to find rejuvenation
effects in the dynamics of the Sinai model. Nevertheless, since time/length separation is not
very drastic in the Sinai model, we find that rejuvenation and memory effects are present
in embryo.

This paper is organized as follows. In the next section we present the Sinai model. In
section 3 we analyse the statics of the model. In section 4 we discuss the dynamics, first
by studying aging in the correlation length and then by studying the ac susceptibility during
temperature cycles. In section 5 we give the conclusion derived from our analysis.

2. The model: Sinai potential

The Sinai model belongs to a wider class of random potential models. It describes the dynamics
of a point particle under the action of a random, uncorrelated force field F(x) which models
several physical situations [39], such as the motion of a domain wall in the random field Ising
model [45], or the motion of a dislocation kink. More recently, this model was argued to be
relevant to describe some tapping experiments in sandpiles [46] and the unzipping transition of
DNA [47]. The effective potential acting on the end point of the disordered directed polymer
in 1 + 1 dimensions is also of the Sinai type [48–50]. However, in this case, the effective
potential itself becomes temperature dependent, and the role of temperature changes in the
directed polymer is much more subtle [24–26].

In the following, we will study the discrete Sinai model. The system consists of a box
of length L in which we generate a random potential. Each sample of the random potential
is constructed as follows. With each site of the box i ∈ [1, L] we associate an independent
random force fi that is chosen according to a probability distribution which is Gaussian with
zero mean, fi = 0, and variance fifj = σ 2δi,j . The potential in each site corresponds to
the sum of the forces in the previous sites Vi = − ∑

j=1,i fj , and is thus a random walk as a
function of the position, i. Therefore, in this model each site corresponds to a different state
or configuration with energy Vi , whose correlations (or barriers) increase as

(Vi − Vj)2 = σ 2|i − j |. (1)

The partition function of this model at temperature T is defined by Z = ∑
i exp(−Vi/T ). This

quantity has been much studied. It is known that the model has no thermodynamic transition
so that in the limit L → ∞, the physics is dominated by the T = 0 glassy fixed point [51–53].
As is obvious from equation (1), a rescaling in the length by a factor b is equivalent to a
change in the scale of the potential by a factor

√
b, or of the temperature by a factor 1/

√
b.

As far as the statics is concerned, this means that being at low temperature in a small system
is equivalent to having a larger system but at a higher temperature. For the dynamics a change
in temperature leads to both a change in length scales and time scales.

3. Static chaos

3.1. Observables

Our aim is to investigate how the thermodynamic properties of the Sinai model change when
comparing the same system at two different temperatures. In order to probe the change in
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the free-energy landscape we have studied two different quantities, (i) the correlation function
of the free-energy fluctuations at different temperatures and (ii) the correlation of the particle
position. More precisely, we have studied the following observables:

• Free-energy correlations: we measure the free-energy fluctuations of the system at
different temperatures averaged over the disorder

CF (L, T1, T2) = �T1�T2√
�2

T1

√
�2

T2

�T ≡ FT − FT (2)

where FT is the free energy at temperature T and (··) stands for the average over different
disorder realizations of the potential. This quantity was originally proposed by Fisher
and Huse [24] to study temperature chaos in the directed polymer problem. The fact
that this correlation tends to zero with the size of the system shows that different energy
valleys contribute to the total free energy at different temperatures. More recently, this
quantity has been used to study the chaotic properties in the REM [21], and in the directed
polymer problem when different types of perturbations are introduced [25], or for directed
polymers on a hierarchical lattice [26].

• Fluctuations of position: a more geometrical way of visualizing ‘temperature chaos’
which could be of direct interest in some cases, for example the zipping and unzipping
problem of DNA [47], is to consider the following quantity. With each site i, we associate
a position xi = i/L and compute

d1,2 ≡ (〈x〉T1 − 〈x〉T2)
2 (3)

where 〈··〉T is the thermal average at temperature T, and (· · ·) is the disorder average. The
study of the distance between average positions corresponding to different temperatures
gives us an indication of the distance between states contributing to the partition function
Z at different temperatures. If typical states contributing to Z at T1 and T2 are completely
different, then d1,2 will remain finite as L → ∞. Note that d1,2 has an upper bound
d1,2 � 1/6, where 1/6 is the value reached if the occupied sites are completely
uncorrelated.

Both quantities CF and d have been studied in the REM [21] to show that even if the
energy landscape is fixed (in the sense that there is no reshuffling associated with the different
valleys as temperature is changed), the model exhibits temperature chaos around the critical
temperature, where the Boltzmann weight ‘condenses’ into a finite number of sites. Because
there is no finite temperature transition in the Sinai model, one only observes mild effects
under a temperature change, that are maximum around the crossover temperature T ∼ L1/2

(see below).
Numerically, we have investigated how these quantities behave as a function of L for

different temperature differences. We have averaged over 2000 potential samples generated
from Gaussian forces with zero mean and σ = 1. The sizes studied range from L = 1 to
L = 214. The typical relative error for any of the observables is smaller than 0.1% so that
error bars have not been included in the plots.

3.2. Thermodynamics of the model

The thermodynamics of the Sinai model has been well studied [51–53]. In the large L limit
temperature is irrelevant. The system is frozen or localized in the minima of the potential, so
that physical observables are governed by the ground state and its fluctuations. The free energy
increases as F ∼ −√

L independent of temperature and the entropy reaches an L-independent
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Figure 1. Sinai potential: �2 plotted versus the scaling variable g = σ
√

L/T for T = 1, 2, 10, 50
and 100. The dashed line corresponds to the position fluctuations at zero temperature. For small
g we have plotted the high-temperature prediction g2/120.

value which depends on temperature S = A + 2 ln T . The free-energy fluctuations are also
essentially dominated by the fluctuations of the deepest valley at any temperature. Therefore,
it is reasonable to expect that in the thermodynamic limit a change in temperature has no
significant effect on physical observables since the ground-state properties are temperature
independent.

The finite-size corrections to the thermodynamic behaviour enter through the variable
g = σ

√
L/T . Corrections are important when g ∼ 1, or L ∼ L∗ = (T /σ)2, signalling the

crossover between two different limits:

• L 
 L∗: energy differences among different sites are much smaller than the temperature,
so that all the sites contribute to the partition function.

• L � L∗: energy differences and barriers among different sites are huge and the particle is
localized; only a few sites within the deepest valley contribute significantly to the partition
function.

This crossover is clearly observed in the behaviour of the fluctuations of the mean position (in
units of L):

�2 = 〈x〉2 − 〈x〉2
. (4)

In figure 1 we show the results for different temperatures versus the scaling variable g

defined above. The small g behaviour can be computed using a high-temperature expansion
of the partition function

�2 = g2

120
+ O(g4). (5)

As we can see in the figure, the behaviour for small g matches this prediction nicely. For
large g the system is completely governed by the T = 0 behaviour, thus the average position
fluctuations should approach the fluctuations of the ground-state position. In figure 1, we
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also plot the ground-state position fluctuations as a function of
√

L, that converges towards
1/12. Numerically, we can see that this crossover takes place at g � 3, corresponding to
L∗ � 10(T /σ)2.

This static crossover can be mapped to the dynamical crossover from a Brownian diffusive
regime to an activated regime as we will see in the analysis of the correlation length in
section 4.1.

3.2.1. Free-energy fluctuations. As we can see from the inset in figure 2, the free-energy
correlations are a non-monotonic function of L.3 For small L the free energy at different
temperatures starts decorrelating but at a certain length, LF (T1, T2), CF reaches a minimum.
Then, it starts increasing again and reaches CF = 1 when L → ∞ regardless of the temperature
difference (provided it is finite) as expected. One can distinguish between two different
regimes:

• L 
 L∗
F

For small system sizes/large enough temperatures the energy landscape is essentially
flat, so that all the sites contribute to Z. Therefore, in this regime a high-temperature
expansion is expected to yield the correct behaviour of CF . The result is the following:

1 − CF ∝ (β1 − β2)
2σ 2L (�βσ

√
L → 0) (6)

where β ≡ 1/T .
• L � L∗

F

In this limit the system is governed by the ground state and its fluctuations, thus we expect
that for L → ∞ the correlation is perfect. However, when g1,2 = σ

√
L/T1,2 is large but

finite, the free-energy landscape decorrelates slightly. The behaviour in the large L limit
can be understood by very simple arguments. Suppose that T = (T1 + T2)/2 is small,

3 We have numerically checked that the energy correlations have the same behaviour.
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and that the relative temperature change is also small: ε = (T1 − T2)/T 
 1. Using
∂F/∂T = −S(T ), where S(T ) is the entropy at temperature T, one finds

�F = F(T2) − F(T1) = �T S(T ) + O(ε3) �T = T1 − T2. (7)

Note that this relation is also true for the fluctuating part � of F. Substituting (7) into the
expression for CF and expanding for small ε, we finally get

CF ≈ 1 − �T 2 S2 − S
2

2�2
. (8)

We show in appendix A that the entropy fluctuations tend to a numerical constant K
that we compute in the large L limit. Thus recalling that free-energy fluctuations scale
as �2 = K ′σ 2L, where K ′ can be computed from [52], we find the following scaling
behaviour for 1 − CF :

lim
L→∞

1 − CF −→ K�T 2

K ′σ 2L
. (9)

• Crossover
The crossover between both regimes will take place at a certain length L∗

F such that
�βσ

√
L∗

F ∼ �T/σ
√

L∗
F , which yields L∗

F ∼ T1T2/σ
2. The maximum of 1 − CF

actually occurs for L∗
F ≈ 10 T1T2/σ

2. This suggests the following scaling form for
1 − CF :

1 − CF = �T 2

σ 2L∗
F

f

(
L

L∗
F

)
(10)

with f (x) ∼ x for x → 0 and f (x) ∼ 1/x for x → ∞. The resulting scaling plot is
shown in figure 2. This scaling is acceptable only when temperature differences are not
too large, as one would expect.

3.2.2. Position fluctuations. In figure 3 we show the curves corresponding to the average
distance shift d1,2 defined by equation (3) above, for several temperature differences. Again
we find that this quantity is a non-monotonic function of L. As a matter of fact, the behaviour
of both d1,2 and CF is similar, and the same type of argument can be used for both quantities.

• L 
 L∗
d

In figure 3 we can see that for large temperatures, d1,2 increases with system size. This
behaviour can be explained by looking at a high-temperature expansion. As shown in
appendix B, we find in this regime d1,2 ≈ 1

120 (�β)2σ 2L.
• L � L∗

d

In the large L region the behaviour of d1,2 should be governed by the ground-state
fluctuations. One starts from the relation

〈x〉T1 − 〈x〉T2 = ε

T
(〈xVx〉T − 〈x〉T 〈Vx〉T ) ε = �T

T
(11)

where 〈· · ·〉T is the thermal average at temperature T. This relation is derived from the
fluctuation–dissipation relation (∂〈x〉/∂β = −〈xVx〉c) and integrating it assuming ε 
 1.
The main contribution to d1,2 for small temperatures will come from two nearly degenerate
valleys that are a distance ∼L apart. Restricting the thermal averages to these two valleys,
one finds

〈x〉T2 − 〈x〉T1 ≈ ε

T
Dση

√
L e−βση

√
L (12)
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where D is the distance between the two valleys, and ση
√

L is their energy difference,
such that η is a positive random variable of order unity. In order to obtain d1,2 we have to
compute (〈x2〉 − 〈x1〉)2. This average depends on the joint probability distribution of the
excitations P(η,D). It is reasonable to assume that the probability distribution factorizes
as P(η,D) = h(η)p(D). Therefore in the limit βσ

√
L → ∞ we have

D2η2 e−2βη
√

L = D2

∫ ∞

0
dη h(η) e−2βση

√
Lη2 ∼ D2

h(0)

(βσ)3L3/2
. (13)

Recalling that x is the rescaled distance i/L, one expects D2 ∼ 1. Provided h(0) �= 0,
one finally finds

d1,2 ∼ �T 2

T σ
√

L
(βσ

√
L → ∞). (14)

• Crossover
As for the free-energy correlation, we can extract a crossover length scale which separates
both regimes. The crossover length that is obtained is L∗

d ∼ (T1T2)
4
3 T − 2

3 , that coincides
with L∗

F in the limit T1 = T2. Again, we can try a scaling formula

d12 = (�T )2

(T1T2T )
2
3

h

(
L

L∗
d

)
where

{
h(x) ∼ x x → 0
h(x) ∼ 1√

x
x → ∞.

(15)

Note that the functions f and h are quite different. This reflects the fact that the two
observables probe different mechanisms. In figure 3 we show the scaling plot for different
pairs (T1, T2). Note that all the curves display the maximum at the same value of the
scaling variable L

L∗
d

� 10.
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3.3. Discussion

The outcome of the numerical analysis of the Sinai potential is clear: in the thermodynamic
limit statistical properties are governed by the T = 0 fixed point. This means that, regardless
of temperature, for large enough system sizes, the system only sees the free-energy valley
associated with the global minimum. Effectively this situation is equivalent to saying that
in this limit there is no chaos in temperature since the statistical properties are those of the
minimum of the potential.

This situation is very different from what happens in the directed polymer problem. This
model, as well as the Sinai model, has no thermodynamic transition. It only displays a
low-temperature glassy phase. In a recent paper [25], this model has been shown to be
extremely sensitive to any perturbation leading to the vanishing of correlations between systems
at different temperatures (see also [26, 34] for a related discussion). In this model this is due
to the existence of anomalous large excitations which have a very low free-energy cost. These

excitations cost a lot of energy, and hence energy fluctuations are large
√

(�E)2 ∼ L1/2, but

are very favoured entropically, T
√

(�S)2 ∼ L1/2, so that these two contributions may cancel
to yield a lower cost in free energy ∼L1/3. In the Sinai model these anomalous excitations do
not exist because the entropy is very small (not extensive) and never cancels the energy cost
(∼L1/2) of such excitations.

It is interesting to compare the above crossover lengths L∗
d,F with the crossover length at

each temperature L∗
T ∼ (T /σ)2. The maximum decorrelation takes place for a system size

such that L∗
2 < L = L∗

d,F < L∗
1. In this case the system at T2 is already localized whereas

the system at T1 is still delocalized. The strong influence of temperature shift in this case is a
smeared out version of the infinite susceptibility found in the random energy model [21]. In
the latter there is a true finite temperature phase transition, and not a mere crossover as in the
Sinai case. For larger system sizes, when L∗

1 < L∗
2 < L, both systems are governed by the

zero-temperature fixed point and correlations increase.

4. Dynamics

The dynamics of this model have been well studied, both analytically [38, 41] and numerically
[40]. Single-time as well as two-time quantities have been analysed. Here, we study one
observable of both types; we define in particular an ‘ac susceptibility’ that should be closely
related to the analogous observable studied in spin glasses.

In our simulations we have used boxes of length L = 1024 with periodic boundary
conditions. The dynamics has been simulated by the Monte Carlo method using the Metropolis
algorithm. For each realization of the random potential, in order to sample adequately the
energy landscape we have considered all possible initial conditions (L = 1024) and have
averaged over n ∼ 100 different histories for each starting point. The total number of samples
used in temperature cycling experiments is around 200–300. Despite the low number of
samples used, the average over many different thermal histories (100 × L) for each sample is
enough to ensure small sample-to-sample fluctuations of dynamical quantities. Typical error
bars are of around 0.5% for high temperatures but much smaller (≈0.05%) for the lowest
temperatures simulated (T = 0.1, 0.2, 0.5), so they have not been included in the plots.

We have analysed two different quantities:

• The correlation (or explored) length:

ξ2(t) = 〈(x(t) − x(0))2〉. (16)
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The brackets and overline mean that we average over both the L×n histories and samples
respectively. The initial condition is a uniform distribution equivalent to a quench
from infinite temperatures. This correlation length only gives information about the
‘large-scale’ mechanisms and the temperature cycling effects on this quantity can be fully
explained in terms of effective times.

• In order to probe ‘smaller’ length scales that are more sensitive to temperature changes,
we have defined the following ‘ac’ susceptibility χ(ω, tw):

χ(ω, tw) ≡
〈(

x

(
tw +

1

ω

)
− x(tw)

)2
〉∣∣∣∣∣

P(x,tw)

(17)

where the average is taken over the probability P(x, tw) that a particle is at position x at
time tw, starting from a uniform distribution of particles at time t = 0.4 In other words,
we measure the typical extra distance travelled by particles in a time 1/ω, weighted by
the dynamical distribution at time tw . Such a quantity was also considered in [40, 41].

Our main interest in this section is to study the temperature cycling experiments which
are carried out in spin glasses that have shown striking rejuvenation and memory effects
[16, 17]. Our main goal here is to see to what extent these effects are already present in the
Sinai model. We have performed numerically the standard temperature cycling experiment:
quench from infinite temperature down to T1 and let the system relax during tw1 ; then change
the temperature to T2 = T1 + �T and let the system evolve during tw2 and finally return
to T1. We have studied cycles with positive and negative �T for several waiting times and
frequencies.

4.1. The correlation length

The time evolution for the correlation length at different temperatures is shown in the left-hand
panel in figure 4. The growth of the correlation length depends exclusively on a temperature-
dependent microscopic time scale τ0(T ). This time scale is related to the crossover between
two different dynamical regimes [38, 41]:
4 We have also investigated the case where the initial distribution is localized on an arbitrary point, with similar
results.
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• t 
 τ0: short-time dynamics where no barriers are present, so that in this regime we have
the usual Brownian diffusion ξ2(t) = Dt .

• t � τ0: long-time, activated dynamics, with an activation time which follows an
Arrhenius law with a typical barrier B ∼ σ

√
L [38]. Using t = τ0 eB/T and L ∼ ξ

leads to ξ2(t) ∼ (T /σ)4 ln4
(

t
τ0

)
.

The crossover takes place when barriers become comparable to temperature so that activation
between valleys dominates the dynamics. This crossover is directly related to the static
crossover found for position or free-energy correlations from a high-temperature regime (no
barriers) to a (thermodynamic) low-temperature regime (see section 3.2). The microscopic
time scale can thus be identified with the time that typically the system takes to explore this
static crossover length scale L∗ � 100(T /σ)2. Therefore, for σ = 1, τ0(T ) = L∗2/D �
200T 4 (D can be evaluated to be D ≈ 0.5).

One, therefore, expects that the correlation length at a given temperature (16) can be
expressed as T 4f (τ), where f is a function of the scaling variable τ = t/τ0, with{

τ 
 1 f (τ) ∼ τ

τ � τ0(T ) f (τ ) ∼ ln4 τ.
(18)

This scaling behaviour works very well, as shown in the inset of figure 4, where we rescale
together all temperatures. Such a crossover between a short-time growth law and a long-time
activated behaviour is also expected in the droplet description of spin glasses [14, 17, 19, 54],
or directed polymers, where barriers grow with the size � of the excitations as B(�) = ϒ�ψ ,
where ϒ is a function of temperature. This leads to a logarithmic growth of the size of the

droplets, � ∼ (
ln t

τ0

) 1
ψ , where τ0 is a microscopic attempt time, possibly renormalized by

critical fluctuations [17, 55, 56]. The Sinai case corresponds to ψ = 1/2 and τ0 ∝ �2. As a
more precise description of the crossover, we have shown in figure 4 the following fit:

t (�) = A�2 exp(B
√

� ln ln �) (19)

where the ln ln � accounts for the famous Khinchin iterated logarithm law for the maximum of
a random walk [57]. Note that the two kinds of limiting behaviour for ξ2 in (18) are consistent
with this last expression. In figure 4 the right-hand plot shows ln t versus ξ2 for T = 0.7
which are nicely fitted by the expression above.

The correlation length is a monotonic function of time and temperature. The temperature
only plays the role of slowing down dynamics, therefore a change in temperature only changes
the growth law. Any time tw spent at a temperature T1 is equivalent to having spent an
effective time teff(tw, T1, T2) at T2 such that ξ2(tw, T1) = ξ2(teff, T2). Thus in temperature
cycling protocols there is no trace of the chaotic effects observed experimentally on the
correlation length itself (see figure 5).

4.2. Susceptibility

In the previous section we have studied the correlation length ξ(tw) that tells us how far the
particle can go in a time tw. This quantity is the analogue of the size of the domains in
a droplet coarsening description. However, in ac experiments after a negative temperature
shift one probably observes how the ‘domain walls’ reconform on a scale which is small
compared to ξ(tw). The susceptibility defined in (17) probes these ‘small’ length scales and
might show an interesting behaviour during temperature cycling, not revealed by ξ(tw) (see
figure 5). The study of the ‘response’ function (17) is useful because the results admit an
intuitive interpretation in terms of the evolution of P(x, tw), which is the quantity that keeps
track of the thermal history of the system.
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Figure 5. Correlation length ξ(t) versus time for the following experiments. Left: spend tw
at T1 = 5 and then quench the system down to T2 = 0.5 for tw = 16, 1662, 8192, 40 959 and
106 494 from bottom to top. Right: spend tw at T1 = 1 and then heat the system up to T2 = 5 for
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−10 490 990 1490
tw

0

20

40

60

80

tw

χT1,T2

tw   teff

χ∞,T2

Figure 6. Measure of the effective time when cooling the system down to T2 = 0.5 after having
spent tw1 = 512 at T1 = 5 at ω = 1/128. Note that only the late part of the curves can be
superimposed: there is a transient that cannot be accounted for using an effective time.

In order to compare with experiments, one should have the following conditions: long
waiting times tw and low frequencies ω, but such that ωtw � 1. This last condition is imposed
by the fact that a harmonic response can only be measured on a time larger than one oscillation
period. This also ensures that one is in a regime where the violations of the fluctuation–
dissipation theorem are weak and one can identify the fluctuation that we measure, (17), to a
response [12].

From the results of the simulations we observe that the effect of aging at temperature
T1 on the relaxation at T2 strongly depends on the temperature difference and on the waiting
time. This effect can be quantified by defining an effective time (figure 6). For instance, when
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Figure 7. Normalized effective times teff/tw1 : (A) at fixed ω versus tw1, (B) at fixed tw1 versus
1/ω.

cooling the system from T1 to T2 one expects that if the system is completely rejuvenated, the
relaxation curve χT1,T2(ω, tw2) should correspond to that obtained after quenching from high
temperature χ∞,T2(ω, tw2). (Here tw2 is counted from the time at which the system reaches
T2.) However, if the relaxation at T1 affects aging at T2 then rejuvenation is only partial and
the new relaxation corresponds to that of the system after aging during an effective time teff at
T2, χ∞,T2(ω, tw2 + teff). Thus if teff = 0, rejuvenation is complete. In figure 7 we show how
this effective time is measured. Note that only the late part of the curves can be superimposed:
there is a transient that cannot be accounted for using an effective time. A similar effect can
be observed in spin glasses. The same effective time can also be defined when heating back
the system, as a measure of memory recovery.

Experimentally, the observed facts in spin glasses are the following:

• When cooling the sample from T1 < Tc to T2 < T1, teff is larger than tw1 when �T is
small enough, indicating that aging at T1 is more efficient because it is faster at higher
temperature [58]. However, as �T increases, teff starts decreasing towards zero. In other
words, for large enough �T , rejuvenation is complete. A related phenomenon is the
absence of cooling rate effects. The relaxation at low temperature does not depend on
the cooling history. Only the very last steps at nearby temperatures determine the final
relaxation [12].

• When heating back from T2 to T1 the system resumes its relaxation, for large enough
�T , as if the stay at lower temperatures did not take place (perfect memory). As �T

is reduced, an effective age <tw2 that accounts for the time spent at T2 must be added.
Furthermore, a small transient appears at short times, this was called ‘memory anomaly’
in [58]. As in experiments, this anomaly is non-monotonic with �T : for small �T ,
the reference curve corresponding to perfect memory is reached from below, whereas for
larger �T , it is reached from above [58]. Finally, for still larger �T , memory is perfect,
as stated above.

Note that if the time tw1 spent at T1 at the first stage of the cycle is very small, one
expects, from the previous discussion, to see ‘rejuvenation’ after heating back to T1 in the
negative temperature cycle, since the system has kept the memory of the age it had on the
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Figure 8. Negative and positive temperature cycles. (A) and (B) correspond to cycles with
�T < 0, data for ω = 1/128, tw1 = 128, tw2 = 1024 and for cycle (A): T1 = 5, T2 = 0.5
and (B): T1 = 2, T2 = 0.5. (C) and (D) correspond to cycles with �T > 0, for cycle (C):
T1 = 0.5, T2 = 5, ω = 1/1024 and tw1 = tw2 = 8192 and (D): T1 = 0.5, T2 = 2, ω = 1/1024
and tw1 = tw2 = 2048. The dashed line corresponds to the first measurement possible in a regular
experiment tw = 1/ω.

way down, i.e. tw1 
 tw2. This rejuvenation after a positive �T has been observed many
times experimentally.

Let us now turn to the results of the simulations, following the above presentation of
experimental data.

• The data of figure 8 correspond to temperature cycles with T1 = 5, T2 = 0.5 or
T1 = 2, T2 = 0.5. The main observation here is that clear rejuvenation is observed, with
an effective shift time that decreases as �T increases, as in the experiments. Intuitively,
this corresponds to the fact that since the potential is self-similar, the local dynamics
probed by χ(ω, tw) is not sensitive to the depth of the potential valley that is currently
occupied. Therefore, aging at T1 has already selected some low-lying valleys, but the
intra-valley dynamics is insensitive to this. This argument for rejuvenation based on
a hierarchical energy landscape, and in the absence of temperature chaos has been put
forward in [6, 7, 16, 17], and has been confirmed numerically in the multi-level trap model
in [22]. In figure 7 we show the normalized effective waiting times as a function of both
tw1 and 1/ω. Note that lower frequencies, that correspond to larger length scales, are less
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fixed ω = 1/128 and tw1 = 1024 for the temperature changes T1 = 5, T2 = 0.1, 0.2 for different
tw2 = 512, 1024, 4096. In the inset we plot �χ as defined in (20) for the different tw2.

easily rejuvenated, as expected, since the separation of time scales is not as sharp (see the
triangles in figure 7).

• When heating the system back to the initial temperature T1, some memory is observed.
However, (i) when the temperature difference is not very large, some effective time,
accounting for the period spent at T2, must be included, as in the experiments, and (ii) a
strong transient ‘memory anomaly’ is observed, even for quite large �T (see (A) and (B)
in figure 8). The memory anomaly is defined as

�χ = χ(tw1 + tw2 + 1/ω) − χ(t−w1) (20)

where χ(tw = t−w1) is the susceptibility just before the quench and χ(tw1 + tw2 + 1/ω)

corresponds to the first possible measurement at frequency ω after heating back to T1.
In figures 9 and 10 the dependence of the memory anomaly on different parameters,
including the frequency, is shown. Note that we have always observed this memory
anomaly to be negative, i.e. the reference curve is reached from below.

In figure 9 we show how the memory anomaly varies with the time tw2 spent at T2, for a
fixed ω = 1/128 and tw1 = 1024, for the largest �T . From the inset, we see that the larger
�T , the smaller |�χ |, which agrees with the interpretation that the strong rejuvenation
effect found for large �T arises from the separation of length scales. In the plot in figure 10
we show how the memory anomaly depends on the frequency ω. Since the susceptibility
at tw1 itself depends on ω we plot the relative variation of the susceptibility with respect
to χ(t−w1) at fixed tw1 = tw2 = 1024. In the inset we show �χ/χ(t−w1) versus ω. Note that
�χ/χ(tw1) is always negative and its absolute value decreases with increasing 1/ω. In
[58], Sasaki et al find that the anomaly can be both positive and negative when one works
in the vicinity of a transition temperature. In the Sinai model we have not been able to
observe such a positive anomaly. For smaller �T these effects are blurred because length
scale separation becomes weak. Aging at different temperatures is cumulative and �χ/χ

is also larger (see figure 8 for the T1 = 2 → T2 = 0.5 cycle). For these smaller �T , we
have found that the memory anomaly becomes non-monotonic with frequency.
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• Positive temperature cycle experiments. We have also observed that the third stage is
completely independent of tw1. Heating the system back to T2 erases the initial aging
accumulated at T1. This is expected, since the dynamics at T2 allows the system to leave
the traps that it had slowly explored at T1. The new relaxation at T1 is aged, but the age is
only due to the effect of aging at T2. This is similar to the effect observed experimentally.

5. Discussion

In this paper we studied in detail the role of temperature shifts in the simplest model where
the energy landscape is explicitly hierarchical, namely the Sinai model. This model has both
attractive features (there are valleys within valleys in a strict self-similar sense), but also one
important drawback: there is no phase transition so that the model, in the large-size limit,
is effectively at zero temperature. Therefore, in this limit, temperature shifts do not lead
to interesting phenomena: entropy in this model does not play any role, so that excitations
have an enormous free-energy cost and cannot be favoured by the temperature perturbation,
contrarily to what happens in a closely related model, the directed polymer [25] (see
also [34]).

Nevertheless, for finite sizes/finite times, some interesting crossover phenomena
qualitatively reproduce the spin-glass phenomenology. In particular, dynamical rejuvenation
effects in the absence of temperature chaos are observed. This rejuvenation is ascribed to
the local dynamics, which is insensitive (due to the self-similar nature of the potential) to
the particular valley that has been reached during aging at a higher temperature. Still, the
separation of time scales/length scales with temperatures is much weaker than in experimental
spin glasses [17], partly due to the rather modest time scales investigated in the present study.



Temperature shifts in the Sinai model: static and dynamical effects 681

Correspondingly, abrupt rejuvenation as the temperature is decreased and strict memory when
the temperature is cycled cannot be achieved. Rejuvenation and memory are present in embryo.

In other words, the Sinai model is a smeared out version of the multi-level trap model
studied in [7, 22], where the sequence of critical temperatures is replaced by a gradual freezing
in the detail of the fractal landscape. One could have studied the effect of temperature shifts
in a one-dimensional potential with logarithmic correlations (rather than linear, as in the Sinai
case). This model was studied in detail in [59] and was shown to exhibit a true transition
temperature. We expect the resulting temperature shift phenomenology to be very close to
that of the random energy model, explored in [21]. An extension of this model, that has an
infinite sequence of phase transitions, will be presented in the near future [60].
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Appendix A. Calculation of the entropy fluctuations in the deepest well

In this appendix we compute the average entropy fluctuations of the Sinai model in the large
L limit. As we have already said in section 3.2.1, these entropy fluctuations are constant in
this limit. For this computation we only need to consider the contribution to the partition
function arising from the deepest minima. In a recent paper [42], Monthus and Le Doussal
compute the probability distribution of the partition function of the deepest well considering
that the origin in energies is at the bottom of the potential. They compute P(Z) obtaining
the Laplace transform as∫ ∞

0
dZ e−tZP(Z) = 1

I 2
0 (a

√
t)

a = 2

βσ
(A.1)

where β = 1/T and σ 2 is the variance of the random force. This result implies that we can
work in terms of a dimensionless partition function z = Z/a2 to obtain∫ ∞

0
dz e−tzp(z) = 1

I 2
0 (

√
t)

. (A.2)

Since the energy of the absolute minimum is set to zero, the entropy fluctuations can be directly
computed as

S(T )2 − (
S(T )

2) = ln2 Z − lnZ2
. (A.3)

Now in terms of the dimensionless partition function we have that lnZ = ln z + ln a2, thus
when computing fluctuations of averages over z terms which depend on a (and thus on T)
cancel to yield

S(T )2 − (
S(T )

2) = ln2 z − ln z
2 =

∫ ∞

0
dz p(z)(ln z)2 −

(∫ ∞

0
dz p(z) ln z

)2

(A.4)

which is a constant as we expected. This constant can be evaluated by computing the averages
of ln z and ln2 z. The starting point of the calculation is Derrida’s integral representation of
the logarithm,

lnZ = lim
q→0

∫ ∞

q

dt
1

t
(e−t − e−tZ). (A.5)
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When we perform the average of e−tz we obtain the Laplace transform given in (A.2), thus

ln z = lim
q→0

∫ ∞

q

dt
1

t

(
1

I 2
0 (

√
t)

− e−t

)
. (A.6)

This integral can be split into two parts, the exponential integral∫ ∞

q

dt
1

t
e−t = −γ − ln q + q +

q2

2
+ · · · lim q → 0 (A.7)

where γ is the Euler constant, and the part with the Bessel function,∫ ∞

q

dt
1

t

1

I 2
0 (

√
t)

= 2
∫ ∞

√
q

dt
1

t

1

I 2
0 (t)

= 2
∫ ∞

√
q

dt

(
− d

dt

K0(t)

I0(t)

)
= 2

K0(
√

q)

I0(
√

q)

= −ln q + 2 ln 2 − 2γ + (ψ(2) − 1)
q

8
+ · · · (A.8)

where we have used the Wronskian property of the Bessel functions

−1

t
= K ′

ν(t)Iν(t) − Kν(t)I
′
ν(t). (A.9)

Adding these two contributions we obtain that the average entropy reads

S(T ) = lnZ = −2 ln a − 2 ln 2 + γ. (A.10)

To compute the average ln2 z we have to evaluate the following integral:

ln2 z = lim
q→0,p→0

∫ ∞

q

dt

∫ ∞

p

dt ′
1

tt ′

(
e−t−t ′ − e−t ′

I 2
0 (

√
t)

− e−t

I 2
0 (

√
t ′)

+
1

I 2
0 (

√
t + t ′)

)
. (A.11)

The contribution arising from the first three terms in the integral can be evaluated from
expressions (A.6) and (A.7) to obtain∫ ∞

q

dt

∫ ∞

p

dt ′
e−t−t ′

tt ′
= γ 2 + γ ln qp + ln q ln p + O(q, p)

∫ ∞

q

dt

∫ ∞

p

dt ′
e−t

t t ′
1

I 2
0 (

√
t ′)

= (γ + ln q)(2γ − 2 ln 2 + ln p) (A.12)

∫ ∞

q

dt

∫ ∞

p

dt ′
e−t ′

tt ′
1

I 2
0 (

√
t)

= (γ + ln p)(2γ − 2 ln 2 + ln q).

The last term is somewhat more involved and can be evaluated as follows:∫ ∞

q

dt

∫ ∞

p

dt ′
1

I 2
0 (

√
t + t ′)

= 2
∫ ∞

q

dt
1

t

K0(
√

t + p)

I0(
√

t + p)
+ 2

∫ ∞

p

dt ′
1

t ′
K0(

√
t ′ + q)

I0(
√

t ′ + q)
. (A.13)

In the limit p → 0 the integral can be Taylor expanded yielding∫ ∞

q

dt
1

t

K0(
√

t + p)

I0(
√

t + p)
=

∫ ∞

q

dt
1

t

K0(
√

t)

I0(
√

t)
+ O(p) (A.14)

where the terms of order p do not contribute when we set p to 0. Hence we can evaluate
expression (A.13) at p = 0 to obtain∫ ∞

q

dt
1

t

K0(
√

t)

I0(
√

t)
= 1

2
ln2 q − 2 ln 2 ln q + 2γ ln q + 2 ζ = 0.2415 . . . . (A.15)

Adding all the contributions and taking the double limit q → 0 and p → 0 we obtain the

following result for ln2 z:

ln2 z = 4ζ − 3γ + 4γ ln 2 (A.16)

which finally yields the entropy fluctuation

K = S2 − S
2 = 4(ζ − (γ − ln 2)2) = 0.912 784 . . . . (A.17)
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Appendix B. High-temperature expansion of the distance shift

We want to compute the high-temperature behaviour of the average distance shift between
systems at two different temperatures d1,2 as defined in equation (3),

(〈x〉1 − 〈x〉2)2. (B.1)

In the high-temperature limit β → 0 a simple Taylor expansion yields

〈x〉 = 1

L

(∑
i

xi − β

(∑
xiVi −

∑
xi

∑ Vi

L

))
(B.2)

where Vi is the random potential at position xi = i/L. Therefore for (B.1) we obtain

(〈x〉1 − 〈x〉2)2 = �β2 1

L2

(∑
i

xiVi −
∑

i

xi

∑ Vi

L

)2

= (�β)2 σ 2

120

(L2 − 1)(L2 + 10L + 11))

L3
(B.3)

where in the last equality we have used the relation ViVj = σ 2 min{i, j } which holds for
Gaussian distributed forces with zero mean. For large L we recover expression (5),

(〈x〉1 − 〈x〉2)2 = σ 2

120
(�β)2L. (B.4)
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